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Edge waves: a long-wave theory for oceans 
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Edge waves travelling along a straight coastline are examined in the case when 
the water depth approaches a constant value at  large distances from the coast. 
Only the fundamental mode is examined in the limit as the ratio of the water 
depth a t  infinity to the edge-wave wavelength tends to zero. TWO comparison 
theorems are used to obtain upper and lower bounds for the dispersion relation. 
A long-wave approximation procedure is used to obtain the leading terms in the 
dispersion relation for a wide class of bottom topographies. The results obtained 
are compared with an exact result for the case when the bottom topography is a 
rectangular step. 

1. Introduction 
It was observed by Stokes (1846; see Wehausen 1960, § 18) that edge waves 

can propagate along a straight coast when the water depth has a constant slope. 
These waves have a frequency (glsinp)g, where I is the wavenumber and p is 
the slope of the bottom; the amplitude decreases exponentially with distance from 
the coast, and the energy is finite and effectively confined to within a wavelength 
of the coast. Ursell (1952) showed that the Stokes edge wave is the first in a 
sequence of edge waves, where the nth mode has a frequency (91 sin [2n  + I] p)g, 
and (2n+ 1)p 6 in. Thus for a given slope, there are only a finite number of 
modes, the number increasing as the slope decreases. 

There would seem to be no other exact edge-wave solutions known (‘exact ’ 
here being within the context of the inviscid irrotational theory of linearized 
water waves). Eckart (1 951) used the shallow-water approximation to examine 
edge waves on a beach of constant slope, and found an infinite set of modes 
with frequencies (g1[2n + I] tanp)*, n = 1, 2, 3, . . . ; comparison with Ursell’s re- 
sults (1952) indicates agreement for sufficiently small values of (2% + 1) p; also 
the exact theory forecasts only a finite number of modes, while the shallow- 
water approximation predicts an infinite number. Ball (1967) and Longuet- 
Higgins (1967) also used the shallow-water approximation; both found an in- 
finite set ofedge-wave modes; Ball’s results were for an exponential depth profile 
and Longuet-Higgins’s results were for a rectangular step. Both authors also 
considered the effect of rotation. Shen, Meyer & Keller (1968) used a different 
approximation procedure based on the smallness of the bottom slope; their 
procedure used the ratio of the edge-wave wavelength to the trapping distance 
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from the coast as a large parameter, and is therefore expected to be most useful 
for the higher modes. For a recent survey of this procedure and the shallow-water 
approximation, see Meyer (1971). 

In  this paper we shall consider edge waves over water whose depth approaches 
a constant value a t  large distances from the coast. Although it has been con- 
jectured that, for this geometry, there is an infinite set of edge-wave modes, we 
shall concentrate attention on the fundamental mode for which the frequency 
and wavenumber simultaneously tend to zero. I n  3 2 the problem is formulated. 
I n  $ 3 two comparison theorems are established and used to obtain bounds on the 
dispersion relation connecting the frequency and wavenumber. For the lower 
bound an extra assumption (3.15) is made concerning the depth profile. In  $4 a 
long-wave approximation procedure is presented, and is based on the ratio of 
the depth a t  infinity (i.e. a large distance from the coast) to the edge-wave wave- 
length being a small number. In  this section a different assumption (4.1)’ or 
(4.33), is made concerning the depth profile. I n  $5 the shallow-water approxima- 
tion procedure is examined in relation to the long-wave approximation used in 
3 4. In  $ 6 the case when the depth profile is a rectangular step is examined through 
an exact integral equation. The dispersion relation for the fundamental edge 
wave is obtained and the results of §$4 and 5 confirmed for this special case. 

2. Formulation 
We shall assume that the depth contours are parallel to the straight coastline, 

and that far from the coast the depth tends t o  a constant value h,. The equations 
will be presented in dimensionless form, using h, as the unit of length, (gh,)* as 
the unit of velocity and (h,/g)B as the unit of time. The x axis is directed away 
from the coast, the z axis is coincident with the coastline and the y axis is vertical. 
The fluid, in the equilibrium state, occupies the region 9, which is bounded by the 
free surface 9, y = 0, and the bottom 9, y = - h(x), where h(0) = 0, h(x) > 0 and 
h - t l a s x - t o o  (seefigurel). 

It will be assumed that the fluid is inviscid, incompressible and of constant 
density, and the discussion will be confined to the linear theory of irrotational 
surface waves, neglecting surface tension. Then the velocity potential $*(x, y, Z, t )  
satisfies Laplace’s equation 

and the boundary conditions 

( 2 . 2 )  

and &$*/an= 0 on 9. (2.3) 

We are interested in edge waves travelling parallel to the coast and we therefore 
seek solutions for which 

$* = $(x, y) cos (ZZ - at). (2.4) 
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FIGURE 1. Notation. 

9 then satisfies the equation 

and the boundary conditions 
a#lay = u2# on 9 

and a$/&= 0 on 9. 

Edge waves are characterized by the extra condition 

$,1V$1 - t o  as x - f c o .  (2 .8)  

In  addition, it will be assumed that $ and V$ are continuous throughout 9’)s 
and 9) except possibly for integrable singularities at  x = y = 0 (and possibly 
a t  other ‘corners’ on 9); these singularities are sufficiently weak to ensure that 
$ and V$ are integrable, and square-integrable throughout 9’. 

The existence of a non-trivial solution to (2.5)-(2.8) will be possible only if 
r ,  the frequency, is related to I ,  the wavenumber, by a dispersion relation. 
Green’s theorem in a plane, for a region d with boundary 8 d ,  states that 

where v is a two-dimensional vector field and n is the outward normal to a d .  
Application of this to V$ over the region9 yields the compatibility relation 

(2.10) 

where c = wll is the phase velocity. (2.11) 

It may be conjectured (cf. Meyer 1971) that there is an infinite sequence of 
edge-wave modes, and that the fundamental mode is that for which u -+ 0 as 
1 -+ 0. In  this paper the existence of this fundamental mode will be assumed; 
given this, our aim is to determine the dispersion relation in the limit 1 + 0. 
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A further application of Green’s theorem to $Vq5 shows that 

(2.12) 

The left-hand side of this equation is (one quarter of) the kinetic energy of the 
edge wave, and the right-hand sideis (one quarter of) the potential energy. It will 
be assumed that the condition (2.8) is sufficient to ensure that the integrals in 
(2.12) (and also (2.9)) converge, as edge waves are characterized by having 
$finite energy (Meyer 197 1 ) . 

3. Comparison theorems 
Two theorems will be established, both of which depend on the vector identity 

(3.1) I vqq 2 + 1 2 p  = $21 Vv12 + v2$(12$ - 0”) + v . (V2$V$), 

where $25 = +.. (3.2) 

Let Yrn (and similarly 3, and 9,) be the restriction of 9 to x G xm, where {zm> 
is a monotonic sequence of positive numbers such that z, --f cc as m -+ co (cf. 
figure I ) .  Then, from Green’s theorem (2.9)) 

THEOREM 1. Let cr be the frequency of an edge wave of wavenumber I, and let 
$ (the comparison function) satisfy the conditions 

Then 

Proof. Let q5 be an edge wave in (3.2); then in (3.3), using (3.4)-(3.7), it follows 
that 

( JVq512 + d z d y  - r2 dy + (a:- c+)f v2$2dZ. 
*m 

(3.10) 
As m --f 00, the left-hand side of (3.10) tends to zero (using (2.12)); from (2.8) 
and (3.8) the first term on the right-hand side also tends to zero as m -+ co. The 
result (3.9) follows on letting m -+ 00 in (3.10).  

This comparison theorem is related to similar theorems which have been 
established for eigenvalue problems associated with the Laplacian operator in 
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bounded domains (cf. Hersch & Payne (1968), and the references there). The 
result can also be established in a vector form. Let p be a vector such that 

V . p + J p / 2 <  12 in 9, p . n  B 0 on 9, p . n  B CT; on 9, } (3.11) p . i  is bounded as x + co. 

Here i is a unit vector in the x direction. Then i t  may be shown that (3.9) is 
obtained as before; the proof is similar to that of theorem 1 (cf. Hersch & 
Payne 1968). Theorem 1 is recovered on letting p = V$/$. 

THEOREM 2. Let x be an edge wave of frequency CT and wavenumber I (i.e. a 
solution of (2.5)-(2.8)) which satisfies the conditions 

x > 0 in Y,9,9,  xx/x boundedas x-+ 00. (3.12) 

Let q5 be any function which satisfies the condition 

Then 

q5+0 as x-too. (3.13) 

(3.14) 

Proof. Let $ = x in (3.2); then since x > 0, any function q5 may be expressed 
in the form (3.2), and so (3.3) becomes 

( 1 vq5 12 + E2q52) dx dy - CT2 p a x  2. xx ssy. Ism LXm x q52dy* 

Theright-handsidevanishesasm-tooonusing (3.12) and(3.13). Theresult (3.14) 
follows on letting m --f 00. Although there is no proof available that there exists 
a positive edge wave, the results of $ 4  make it plausible that the fundamental 
edge-wave mode satisfies the conditions (3.12). Theorem 2 is a form of Rayleigh's 
principle. 

Theorems 1 and 2 together provide upper and lower bounds for the dispersion 
relation. First we shall apply theorem 1 for the class of depth profiles satisfying 
the condition 

where 

h' 2 M(1-h)  2 0, 

M > 0. 
(3.15) 

This condition implies that 1 - h 2 e-Mz,  and in particular, that h'(0) 2 M. For a 
comparison function, choose 

where 

and 

@ = cosh El( 1 + y) exp ( - y lx) ,  
y2 - 12 - k2 
1 -  l > O  

CT; = k, tanh k,. 

(3.16) 

(3.17) 

(3.18) 

Then @ satisfies (3.4), (3.8), (3.5) and (3 .7) ,  the latter two with equality. Also 

(3.19) 

and so the remaining condition on $, inequality (3.6), will be satisfied if 

ylh' 2 Ic,tanhk,(l-h). (3.20) 
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FIGURE 2. Graph of cr2 against h2. The shaded area indicates the region in which the 
dispersion relation may be satisfied. The curve cr2 = 5; is shown for M = 1. 

But tanh [ 6 tfor all non-negative 6, and hence (3.20) will be satisfiedif we choose 

k2, = Y l M ,  (3.21) k, so that 

where M is defined by (3.15). Equations (3.17), (3.18) and (3.2 1) determine (rl as a 
function of I and theorem 1 now implies that (r2 2 (r2,, for depth profiles 9 satis- 
fying ( 3.15). For small values of 12,  equation ( 3.2 1) implies that 

(3.22) 

A graph of (r; versus l 2  is shown in figure 2 (for M = 1) .  It is possible to relax 
the condition (3.15) on the depth profile 9 by choosing a different comparison 
function, but the results are not as tidy as (3.21) and will therefore not be pre- 
sented here. 

The results of $ 4  show that, if the depth profile 9 eventually becomes flat 
(cf. (4.1): h = 1 for all 2 > x,, say), then 

c2 6 tanhl/l, or (r2 6 ltanhl. (3.23) 

This inequality may also be established from theorem 2, without using the 
assumption (4. l),  provided that it is assumed that there exists an edge wave satis- 
fying (3.12). The proof involves putting 

q5 = coshZ(l+y)exp(-€2) (3.24) 

in (3.14), and hence showing that 

(3.25) 
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But (3.26) 

where Q is a constant depending on 1, and h, but independent of E. The result 
(3.23) is now obtained by letting e --f 0. 

We have now obtained both upper and lower bounds on the dispersion relation 
(assuming, in particular, that (3.15) holds), and these are displayed in figure 2, 
where the shaded region indicates the allowed values of a2, viz. 

(3.27) u: < u2 < 1 tanh 1. 

I n  particular, (3.22) implies that 

c 2 + 1  as 12-+0. (3.28) 

4. Long-wave approximation 
In  this section it will be assumed that 

h = 1 for x > xo, (4.1) 

where xo is O(1) (as 1 --f 0) .  The class of depth profiles defined by (4.1) is different 
from that defined by (3.15); nevertheless, since many depth profiles satisfy both 
(3.15) and (4.1), weshalluse theresultsof $ 3  todraw conclusionsabout thenature 
of the dispersion relation when (4.1) is assumed. 

Let k and km (m = I, 2,3)  be the positive solutions of the equations 

a 2  = k tanh k, 
a 2  = -kmtank, (m = 1,2,3,  ...). 

The functions in the set (Gosh L( 1 + y), cos km (1  + y)> then form a complete 
orthogonal set over the interval - I < y 6 0 (see Wehausen 1960, $ 16) and 
satisfy the boundary conditions (2.6) (at y = 0 )  and (2.7) (at y = - 1). Hence 

q5 = a cosh k ( 1  + y) exp ( - yx) + C. amcos k,( 1 + y) exp ( - y,x) 
00 

(x > xo), (4.4) 
1 

where y = ( 1 2 - P ) f r  > 0, ym = (P+L; )*  > 0 .  (4.51, (4.6) 

A necessary condition for edge waves is y 2  > 0; thus l2  > k2, and then (4.2) 
implies that u2 < 1 tanhl. The coefficient a will be regarded as an arbitrary 
positive constant; the coefficients a, depend linearly on a. It will emerge in the 
analysis to follow that the a, are O(a12) as 1 -+ 0 (see (4.26)), and hence that (4.4) 
defines an edge wave for which q5 > 0 everywhere (at least as 1 -+ 0) .  

The results (3.27) and (3.28) suggest that the dispersion relation may be 
expressed in the form 

(4.7) 
c 2  = 1 + p 1 2 + 0 ( 1 4 ) ,  

u2 = 12 + p z 4  + o(p. 

k 2  = ( r 2 + & 4 + 0 ( a 6 ) ,  (4.8) 
k, = mm - a 2 / n m  + O( a 4 ) ,  (4.9) 

1 or 
Since, from (4.2) and (4.3), 
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where the error term in (4.9) is independent of m, it follows that 

k2 = 1 2  + (p+ 4) 14 $- 0(16),  

km = rrm - l2/nrn + O(14). 

Then, from (4.5) and (4.6), we have 

y2 = - (p  + +) 14 + o(P), 
ym = 7rm - 12/2nm + O(Z4). 

A necessary condition for the existence of edge waves is 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

- p  > 4. (4.14) 

One consequence of (4.12) is that y is O(Z2) as 1 -+ 0, and that ym is bounded away 
from zero for small values of 1. 

We now let 
# = w+v,  (4.15) 

where w = acoshk(l+y)exp(-yx) (4.16) 

and v = Ca,cosk,(l+y)exp(-y,x) for x > xo. (4.17) 

w may be regarded as a known function, and v satisfies the equation 

and the boundary conditions 

m 

1 

V2v = 12v in 9, (4.18) 

= v2v on 9, (4.19) 

avian = -awlan on 9. (4.20) 

From (4.13) it follows that v -+ 0 (exponentially) as x + 00, independently of 1 
as 1 -+ 0. Also, 

-h‘ ak sinh k( 1 - h ) )  
(1 + h’2)t 

exp (-7”). (4.21) ay Gosh k( 1 - h)  + 
This is zero for x > xo, and for x < xo, 

Since xois O( 1)) this expansion is uniform in x. 
Equation (4.22) implies that v may be expanded in the form 

= a(Z2v,+Z4v2+ ...). (4.23) 

Substituting into (4.18)) (4.19) and (4.22) we have 

V ~ V ,  = o in 9, avl/ay = 0 on 9, 
(4.24) 

Since v -+ 0 as x -+ 00, independently of 1, it follows that v1 -+ 0 as x -+ co and 
hence m 

vl = C arnl cos nmy exp ( - nmx) for x > xo. (4.25) 
1 
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FIGURE 3. Definition of A .  

Comparing this with (4.17) it follows that 

a, = aZ2a,,( - l)m+O(aZ4). (4.26) 

Application of Green’s theorem (2.9) to Vv, yields the compatibility relation 

or 

(4.27) 

(4.28) 

Of course, this result could have been obtained by substituting (4.15) into the 
exact compatibility relation (2.10). In  (4.28) the upper limit of integration is 
really x,, as h = 1 for x > x,. We have thus found 

-p  = A 2 + + ,  

where A = lom (1-h)dx.  (4.29) 

A is the ‘area’ under the depth profile (see figure 3).  A consequence of (4.28) is 
that a necessary condition for the existence of an edge wave is A > 0. 

It has been assumed up till now that the depth profile can be represented by 
y = - h(x), where h is a single-valued function of x for x > 0. This is clearly not 
necessary and ‘re-entrant beaches’ (see figure 4) are permissible; for such 
beaches (4.2s) is replaced by 

A -A’ = (-/3-1)&, 3 (4.30) 

where A is defined in figure 4; if S,, is the area occupied by the fluid for x < xo, 
then A - A‘ = xo - ,Sz0. A necessary condition for the existence of an edge wave is 
A > A’. 

We shall now omit the assumption (4.1). Retaining the decomposition (4.15)’ 
it follows from the compatibility relation (2.10) (or equivalently, applying Green’s 
theorem to V v )  that 

(4.31) 
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FIGURE 4. Definition of A and A’ for a ‘ re-entrant’ beach. 

Using (4.21) and integrating by parts, we have 

[ 
y sizh k 

= a  --+P 
jom sinh k: 1 - h) dx 

O0 sinh k( 1 - h) 

Further progress depends on establishing that v is O(u12), and that v -+ 0 as 
x -+ 03 (independently of I ) ;  then the left-hand side of (4.31) would be O(al4). 
Anticipating that y will again be O(Z2), it  follows from (4.21) that awlan is O(aZz) 
on 9; however, this is not sufficient to deduce that v is O(aZ2). It seems plausible 
that v will be O(aZ2), uniformly in x, if the ‘integrated input’ 

this condition now replaces (4.1). In  addition it must be assumed that h -+ 1 
exponentially as x + 03 with a decay rate which is independent of 1; this is to 
ensure that v -+ 0 as x + 03 independently of 1. With these assumptions, the left- 
hand side of (4.31) is O(aE4), and hence 

sinh k( 1 - h) ax + o(14). (4.34) 
sinh k 

This result confirms that y is O(12); the result (4.28) is then obtained by equating 
O(Z2) terms in (4.34). 

It may be noted that, for the class of depth profiles satisfying (3.15)’ A < M-l, 
so that (4.29) is consistent with (3.27). We conclude this section with two 
examples. First, suppose that 

h = 1 ---Mx. (4.35) 

(3.15) is satisfied and (4.33) will be satisfied if M is O(1). A simple calculation 

- p  = + + 1 / M 2 .  (4.36) shows that 
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1 y =  - r i  

r = - 1  I 

FIGURE 5. Notation for a rectangular step. 

Using shallow-water theory (cf. $ 5 )  Ball (1967) obtained the result 

or 
(4.37) 

Thus the shallow-water theory agrees with the present long-wave approximation 
when M < I, i.e. when the shallow-water dispersive effects dominate over those 
associated with the ‘4’ term in (4.29). This latter term has arisen from our use 
of the correct dispersion relation a2 = k tanh k rather than the shallow-water 
approximation a2 z k2. 

Second, let the depth profile D be the rectangular step of depth d and length 
x, (see figure 5 ) .  Edge waves exist only if d < 1, and then 

- p  = + + X E ( l  -d)2. (4.38) 

I n  $ 6, this case will be investigated by an exact integral equation approach and 
the result (4.38) will be confirmed. 

5. Shallow-water approximation 
Much of the theoretical work on edge waves has been carried out using the 

shallow-water approximation (e.g. Eckart 1951 ; BaII 1967; Longuet-Higgins 
1967). This approximation requires not only that Z < 1 but also that the length 
scale associated with the depth profile $9 be comparable with the wavelength 
2nl-l. I n  the present context this means that x, in (4.1) is comparable with Z-l; 
the procedure used in $4 therefore fails when Zx, is only O(1) (or equivalently 
ZJ 11 -hl dx is only o(I), cf. (4.33)). 

An examination of (4.31) and (4.32) shows that in the shallow-water approxi- 
mation y is O(1) (and not O(Z2) as in $4,  cf. (4.12)), and that the expansion (4.7) 
for cr2 is no longer appropriate. We can now identify two regions in 9’: an inner 
region where xis O( 1)  and an outer region where lx is O( I). In  the outer region we 
let 

x = lx (5.1) 

and H ( X )  = h(x). (5.2) 
50 F L I  62 
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X is the appropriate outer variable, in terms of which (2.5)-(2.7) become 

Qy1/-t-12q5xx = Pq5 in - H  < y < 0 ( X  > 0), (5.3) 

&I = c2l2$ on y = 0 (X > 0), (5.4) 

&,+Z2q5,H'(X) = 0 on y = - H  (X > 0). (5.5) 

We note that H ' ( X )  equals Z-Ih'(x). It is a crucial aspect of the shallow-water 
approximation that H ' ( X )  is O(1) (as 1 3  O),  and so h'(x) must be O(E'); this is 
a significant difference between the long-wave approximation of 3 4 and the 
present shallow-water approximation. 

q5 = @ o + 1 2 @ l + . . .  . (5.6) 

Q0 = P ( X )  (5.7) 

We now let 

Substitution into (5.3)-(5.5) shows that 

(F-F" )y+c2P in - H  < y < 0 ( X  > O), (5.8) 

-F'H' on y = - H  ( X > O ) .  (5.9) 
and @1y = 

It follows that ( H P ' ) ' + ( c 2 - H ) P  = 0. (5.10) 

Here a prime denotes a derivative with respect to X .  Equation (5.10) is the classi- 
cal shallow-water approximation in the present context. A significant feature of 
(5.10) is that H ( X )  in fact depends on 1 (cf. equation (5 .2 ) ) ,  and hence the solu- 
tions of (5.10) will depend on c2 and on I in a complicated manner. Clearly we must 
select that solution of (5.10) which decays to zero as X -+ 00. 

In  the shallow-water approximation (5.10) is customarily supplemented by 
the condition of zero mass flux through the beach, viz., 

FH'+O as X - t O .  (5.11) 

This is the procedure used by Ball (1967) for the depth profile 9 given by (4.35) 
and Longuet-Higgins (1967) for the rectangular step (figure 5). On integrating 
(5.10) with respect to X it may be shown that (5.11) implies that 

(5.12) 

Equation (5.12) may now be recognized as the compatibility relation (2.10) in 
the present context. Indeed, assuming that H'(0) =k 0, it may be shown that the 
condition (5.11) implies that P(0) is finite. I n  this case the matching of the inner 
expansion (fixed x, I + 0) with the outer expansion leads to the composite ex- 

pansion q5 = F ( X )  +O(12). (5.13) 

Thus to lowest order in I, the outer solution contains the inner solution. Sub- 
stitution of (5.13) into the compatibility relation recovers (5.12). 

6. Rectangular step 
We now consider the case when the depth profile 9 is a rectangular step of 

depth d and length xo (see figure 5). For convenience the axes are relocated so 
that x = 0 is a t  the edge of the step. This problem can be formulated as an integral 
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equation for the horizontal velocity at  the step, using a procedure similar to that 
employed by Bartholomeusz (1958) and Miles (1967) for the problem of wave 
transmission over a step. 

Let k and k,, (m = 1 ,2 ,3 ,  . . .) be the positive solutions of the equations 

cr2 = k tmhk  = -kmtank, (6.1) 

Then let +(y) = N-lcoshk(l+y), $,(y) = N , l ~ ~ ~ k m ( l + y ) .  (6.3) 

The functions in the set {+, $mlm = 1,2 ,3 ,  . . .> form a complete orthonormal set 
over the interval - 1 < y < 0 (see Wehausen 1960, $16) and satisfy the boundary 
conditions (2.6) (at y = 0 )  and (2.7) (at y = - 1) .  Hence 

m 

$ = exp ( - YX) + c %a@m(Y) exp ( - Y m X )  in x > 07 (6.4) 

where y = ( 1 2 - k Z ) B  > 0, yn& = (P+kk)B > 0. (6.5) 

1 

A similar procedure may now be followed in x < 0, where Q must satisfy the 
boundary conditions (2.6) (at y = 0), (2.7) (at y = - d )  and Q, = 0 a t  x = -zo. 
Let k" and k; (m = 1,2 ,3 ,  . . .) be the positive solutions of the equations 

~2 = k* tanh k*d = - k: tan k z d ,  
and define 

Then let 
+"(y) = N*-lcoshk*(d+y), kz(y) = N ~ - l C O s k ~ ( d + y ) .  (6.8) 

The functions in the set {$*, +;lm = 1 , 2 , 3 , .  . .> are a complete orthonormal set 
over - d  < y < 0, and hence 

where y" = ( Z L k * 2 ) %  = - i ( k * 2 - / 2 ) 8 ,  7; = ( 1 2 + k ; 2 ) 4 .  (6.10) 

The solution (6.9) has been chosen to satisfy the boundary condition at x = - x0 
as well as (2.6) and (2.7). 

Now define 
U(Y)  = 4zlzc=o. (6.11) 

Then the boundary condition (2.7) implies that 

U(y) = 0, - 1  < y < -a. (6.12) 
50-2 
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In  addition the matching of the two solutions (6.4) and (6.5) is accomplished by 
imposing the conditions that # and q5z are continuous a t  x = 0 for - d < y < 0. 
Hence 

m 

and 

(6.16) 

(6.17) 

Equations (6.16) and (6.17) determine a, a,,, a* and a: in terms of U(y). Sub- 
stitution into (6.15) yields 

r n  
(6.18) 

where 
m 

1 
K(Y, Y') = r-lllr(Y) $r(Y') + E Yrnl $m(Y) $m(Y') 

00 

+y*-lcothy*x,$*(y) $*(y') +C&lcothy;xo$:(y) $i(y'). (6.19) 

Equation (6.18) is a homogeneous Fredholm equation of the first kind for U(y); 
the existence of an edge wave may be established by finding a non-trivial solu- 
tion. The equation has been formulated on the basis that d < 1 ; if d > 1 a similar 
procedure may be followed. The same equation (6.18) is obtained provided that 
d is replaced by one. 

Equation (6.18) is difficult to handle as to find an edge wave we must show that 
the kernel K(y ,  y') is a singular operator (i.e. KU = 0 has 5 non-trivial solution). 
We therefore follow a procedure used by Miles (1967). First define the inner pro- 
duct 

(6.20) 

1 

then introduce a new kernel 
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Equation (6.18) becomes 

(6.22) 

where - y a  = ( U ,  $>, a*y* tanh y*xo = ( U ,  $*>. (6.23) 

We now observe that for an arbitrary non-trivial function f(y) 

and is necessarily positive (note that the same statement cannot be made about 
K as y* tanh y*xo may be negative). It follows that the operator associated with 
the kernel K,(y, y') has a unique inverse. Further, a proof, along analogous lines 
to that given by Bartholomeusz (1958) in a similar situation, may be obtained to 
show that the integral equations 

0 

-d  
f KAY, Y') V ( Y ' )  dY' = $(Y) 

0 

-a  
and 1 K,(y,y')v*(y')dy' = $*(y) in - d  < y < 0 (6.25) 

have unique solutions. It follows from (6.22) that 

U(Y) = av(y) - a*v*(y), 
and substitution into (6.23) yields the equations 

(6.26) 

(6.27) 
- y a  = a(v, $) - u*(v*, $), 

a*y* tanh y*xo = a(v, $*>-a* (v*, $*>. 

If there is an edge wave then these equations must have a non-trivial solution for 
a and a*. The condition that there exists an edge wave is therefore 

(Y+SlJ (Y*tanhY*xo+S,,) - S 1 2 S 2 1  = 0,  (6.28) 

where 81, = (v ,  $>, 8 2 2  = (v*, $*), XI, = (v*, $>, 8 2 1  = ( v ,  $*>. (6.29) 

The symmetry of the operator K,implies that S,, = SZl. Also (6.24) shows that 
S,, and S2, are necessarily positive, and applying (6.24) with f replaced by 
v + av*, a arbitrary, implies that 

S l l S 2 2  2 s:2. (6.30) 

First, let us suppose that d B 1. Then k2 B k*,, and so y* is real and positive, 
since y must be real and positive for an edge wave. But then (6.30) shows that 
(6.28) cannot be satisfied and hence there are no edge waves. This result can 
also be established by observing &hat, if y and y* are both real, (Kf, f) is always 
positive for a non-trivial f. 

Next let d < 1, in which case k2 c k*2. If y* is real there are no edge waves; 

hence let y* = - im*, m* = (k*2- /2)+ .  (6.31) 

Edge waves are possible only if 

or 

k*2 3 12 > k 2 ,  

1 tanh 1 > C T ~  2 1 tanh Id, 

(6.32) 



790 R. Grimshaw 

where the second inequality follows from (6.1) and (6.6). The condition (6.28) 
becomes 

(y  + Sll) m* tan m*x, = yX2, + (S,, S,, - St,). (6.33) 

We shall now show that for small values of 1 this condition can be satisfied. 
From (6.32) small 1 implies that  g is comparable with I, and hence k and k* are 
also comparable with 1. Indeed 

c 2  = k2 + o(14) = + o(z4). (6.34) 

Let Kswo = 1, K,sv, = +(l+y)2, 1i,w; = +d-'(d+y)2. (6.35) 

On expanding (6.1), (6.3), (6.6) and (6.8) for small g2 it follows that 

I ivv = wo + +A, + 0 ( ~ 4 ) ,  

N * ~ *  = 2)o + pw; + 0 ( ~ 4 ) .  

Also w,, v1 and w,* will be O( 1) as 1 --f 0. Substitution into (6.29) shows that 

(6.36) 

For a fixed (but small) value of 1, let u2 increase from 1 tanhld to  1 tanhZ. Then 
y decreases monotonically from I{( 1 - d)B + O(Z2)} to zero; and hence the right- 
hand side of (6.33) varies continuously from S22Z{(l -d )4+0(12) )  to  a positive 
value O(14). But m* increases monotonically from zero to  Z{(d-l- 1)3  +0(l2)}. If 
m%,, remains less than An, then the left-hand side of (6.33) varies continuously 
from zero to S,, m* tan m*x,, and a t  g2 equal to 1 tanh 1 this term will be positive 
and greater than the right-hand side of (6.33). On the other hand, if m*xo exceeds 
in, then the left-hand side of (6.32) varies continuously from zero to infinity 
as g2 increases from 1 tanh Id. I n  either case there must be at least one value of v 2  

€or which (6.33) is satisfied. 
The values of a2 which satisfy (6.33) are given approximately by 

m*dtanm*z,+O(ym*tanm~~z,) = y{i +O((r2 ) )+O(d) .  (6.38) 

There are two cases to  consider. First suppose that xo is O( i), and then tanm*z, 
is O(l ) ,  The left-hand side of (6.38) is O(P)  and so y is O(12). Equation (6.38) now 
simplifies to 

or 
(6.39) 

This agrees with the results obtained in $4, equation (4.38). Next suppose that 
lx, is O(1). Then tanm*x, is O(1)  and s o y  is only O(Z). Equation (6.38) reduces to 

y = m~kdtanm*x,+O(E2), ] (6.40) 
O r  (12 - v 2 ) f  = d(&-1- 1 2 ) 4  tan ( ~ ~ ( r r 2 d - l -  P ) 6 }  + O(Z2). 

Neglecting the error term, this is the result obtained by Longuet-Higgins (1967), 
using the shallow-water approximation. There are n + 1 edge-wave modes, where 
n is the largest integer such that 

nv < Z ~ ~ ( d - 1 -  i )4 .  (6.41) 
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However, this result has been established here on the hypothesis that 1 is small, 
and although (6.41) implies that all the modes for which n > 0 have a low fre- 
quency cut-off, (6.41) should also be regarded as a statement about the magnitude 
of xo. For any prescribed xo, the shallow-water approximation provides informa- 
tion only about the n+ l modes which satisfy (6.41) as l -+ 0. 
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